Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(2): 102173, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38617973

RESUMO

Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.

2.
Cardiovasc Diabetol ; 22(1): 214, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592236

RESUMO

BACKGROUND: Cardiac steatosis is an early yet overlooked feature of diabetic cardiomyopathy. There is no available therapy to treat this condition. Tyrosine kinase inhibitors (TKIs) are used as first or second-line therapy in different types of cancer. In cancer patients with diabetes mellitus, TKIs reportedly improved glycemic control, allowing insulin discontinuation. They also reduced liver steatosis in a murine model of non-alcoholic fatty liver disease. The present study aimed to determine the therapeutic effect of the second-generation TKI Dasatinib on lipid accumulation and cardiac function in obese, type 2 diabetic mice. We also assessed if the drug impacts extra-cardiac fat tissue depots. METHODS: Two studies on 21-week-old male obese leptin receptor mutant BKS.Cg-+Leprdb/+Leprdb/OlaHsd (db/db) mice compared the effect of Dasatinib (5 mg/kg) and vehicle (10% DMSO + 90% PEG-300) given via gavage once every three days for a week or once every week for four weeks. Functional and volumetric indices were studied using echocardiography. Post-mortem analyses included the assessment of fat deposits and fibrosis using histology, and senescence using immunohistochemistry and flow cytometry. The anti-adipogenic action of Dasatinib was investigated on human bone marrow (BM)-derived mesenchymal stem cells (MSCs). Unpaired parametric or non-parametric tests were used to compare two and multiple groups as appropriate. RESULTS: Dasatinib reduced steatosis and fibrosis in the heart of diabetic mice. The drug also reduced BM adiposity but did not affect other fat depots. These structural changes were associated with improved diastolic indexes, specifically the E/A ratio and non-flow time. Moreover, Dasatinib-treated mice had lower levels of p16 in the heart compared with vehicle-treated controls, suggesting an inhibitory impact of the drug on the senescence signalling pathway. In vitro, Dasatinib inhibited human BM-MSC viability and adipogenesis commitment. CONCLUSIONS: Our findings suggest that Dasatinib opposes heart and BM adiposity and cardiac fibrosis. In the heart, this was associated with favourable functional consequences, namely improvement in an index of diastolic function. Repurposing TKI for cardiac benefit could address the unmet need of diabetic cardiac steatosis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Dasatinibe/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Fibrose , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico
4.
Cardiovasc Res ; 119(7): 1583-1595, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635236

RESUMO

AIMS: The ageing heart naturally incurs a progressive decline in function and perfusion that available treatments cannot halt. However, some exceptional individuals maintain good health until the very late stage of their life due to favourable gene-environment interaction. We have previously shown that carriers of a longevity-associated variant (LAV) of the BPIFB4 gene enjoy prolonged health spans and lesser cardiovascular complications. Moreover, supplementation of LAV-BPIFB4 via an adeno-associated viral vector improves cardiovascular performance in limb ischaemia, atherosclerosis, and diabetes models. Here, we asked whether the LAV-BPIFB4 gene could address the unmet therapeutic need to delay the heart's spontaneous ageing. METHODS AND RESULTS: Immunohistological studies showed a remarkable reduction in vessel coverage by pericytes in failing hearts explanted from elderly patients. This defect was attenuated in patients carrying the homozygous LAV-BPIFB4 genotype. Moreover, pericytes isolated from older hearts showed low levels of BPIFB4, depressed pro-angiogenic activity, and loss of ribosome biogenesis. LAV-BPIFB4 supplementation restored pericyte function and pericyte-endothelial cell interactions through a mechanism involving the nucleolar protein nucleolin. Conversely, BPIFB4 silencing in normal pericytes mimed the heart failure pericytes. Finally, gene therapy with LAV-BPIFB4 prevented cardiac deterioration in middle-aged mice and rescued cardiac function and myocardial perfusion in older mice by improving microvasculature density and pericyte coverage. CONCLUSIONS: We report the success of the LAV-BPIFB4 gene/protein in improving homeostatic processes in the heart's ageing. These findings open to using LAV-BPIFB4 to reverse the decline of heart performance in older people.


Assuntos
Cardiomiopatias , Longevidade , Animais , Camundongos , Envelhecimento/genética , Cardiomiopatias/genética , Cardiomiopatias/patologia , Fenômenos Fisiológicos Cardiovasculares , Genótipo , Longevidade/genética , Pericitos/patologia
5.
Front Cardiovasc Med ; 9: 884031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711359

RESUMO

Intimal hyperplasia is the leading cause of graft failure in aortocoronary bypass grafts performed using human saphenous vein (SV). The long-term consequences of the altered pulsatile stress on the cells that populate the vein wall remains elusive, particularly the effects on saphenous vein progenitors (SVPs), cells resident in the vein adventitia with a relatively wide differentiation capacity. In the present study, we performed global transcriptomic profiling of SVPs undergoing uniaxial cyclic strain in vitro. This type of mechanical stimulation is indeed involved in the pathology of the SV. Results showed a consistent stretch-dependent gene regulation in cyclically strained SVPs vs. controls, especially at 72 h. We also observed a robust mechanically related overexpression of Adhesion Molecule with Ig Like Domain 2 (AMIGO2), a cell surface type I transmembrane protein involved in cell adhesion. The overexpression of AMIGO2 in stretched SVPs was associated with the activation of the transforming growth factor ß pathway and modulation of intercellular signaling, cell-cell, and cell-matrix interactions. Moreover, the increased number of cells expressing AMIGO2 detected in porcine SV adventitia using an in vivo arterialization model confirms the upregulation of AMIGO2 protein by the arterial-like environment. These results show that mechanical stress promotes SVPs' molecular phenotypic switching and increases their responsiveness to extracellular environment alterations, thus prompting the targeting of new molecular effectors to improve the outcome of bypass graft procedure.

6.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35349488

RESUMO

Pericytes (PCs) are abundant yet remain the most enigmatic and ill-defined cell population in the heart. Here, we investigated whether PCs can be reprogrammed to aid neovascularization. Primary PCs from human and mouse hearts acquired cytoskeletal proteins typical of vascular smooth muscle cells (VSMCs) upon exclusion of EGF/bFGF, which signal through ERK1/2, or upon exposure to the MEK inhibitor PD0325901. Differentiated PCs became more proangiogenic, more responsive to vasoactive agents, and insensitive to chemoattractants. RNA sequencing revealed transcripts marking the PD0325901-induced transition into proangiogenic, stationary VSMC-like cells, including the unique expression of 2 angiogenesis-related markers, aquaporin 1 (AQP1) and cellular retinoic acid-binding protein 2 (CRABP2), which were further verified at the protein level. This enabled us to trace PCs during in vivo studies. In mice, implantation of Matrigel plugs containing human PCs plus PD0325901 promoted the formation of αSMA+ neovessels compared with PC only. Two-week oral administration of PD0325901 to mice increased the heart arteriolar density, total vascular area, arteriole coverage by PDGFRß+AQP1+CRABP2+ PCs, and myocardial perfusion. Short-duration PD0325901 treatment of mice after myocardial infarction enhanced the peri-infarct vascularization, reduced the scar, and improved systolic function. In conclusion, myocardial PCs have intrinsic plasticity that can be pharmacologically modulated to promote reparative vascularization of the ischemic heart.


Assuntos
Neovascularização Patológica , Pericitos , Animais , Benzamidas/farmacologia , Isquemia/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica , Pericitos/metabolismo
7.
Front Bioeng Biotechnol ; 9: 715717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568300

RESUMO

The neonatal heart represents an attractive source of regenerative cells. Here, we report the results of a randomized, controlled, investigator-blinded preclinical study, which assessed the safety and effectiveness of a matrix graft cellularized with cardiac pericytes (CPs) in a piglet model of pulmonary artery (PA) reconstruction. Within each of five trios formed by 4-week-old female littermate piglets, one element (the donor) was sacrificed to provide a source of CPs, while the other two elements (the graft recipients) were allowed to reach the age of 10 weeks. During this time interval, culture-expanded donor CPs were seeded onto swine small intestinal submucosa (SIS) grafts, which were then shaped into conduits and conditioned in a flow bioreactor. Control unseeded SIS conduits were subjected to the same procedure. Then, recipient piglets were randomized to surgical reconstruction of the left PA (LPA) with unseeded or CP-seeded SIS conduits. Doppler echocardiography and cardiac magnetic resonance imaging (CMRI) were performed at baseline and 4-months post-implantation. Vascular explants were examined using histology and immunohistochemistry. All animals completed the scheduled follow-up. No group difference was observed in baseline imaging data. The final Doppler assessment showed that the LPA's blood flow velocity was similar in the treatment groups. CMRI revealed a mismatch in the average growth of the grafted LPA and contralateral branch in both treatment groups. Histology of explanted arteries demonstrated that the CP-seeded grafts had a thicker luminal cell layer, more intraparietal arterioles, and a higher expression of endothelial nitric oxide synthase (eNOS) compared with unseeded grafts. Moreover, the LPA stump adjacent to the seeded graft contained more elastin and less collagen than the unseeded control. Syngeneic CP engineering did not accomplish the primary goal of supporting the graft's growth but was able to improve secondary outcomes, such as the luminal cellularization and intraparietal vascularization of the graft, and elastic remodeling of the recipient artery. The beneficial properties of neonatal CPs may be considered in future bioengineering applications aiming to reproduce the cellular composition of native arteries.

8.
Front Cardiovasc Med ; 7: 598890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330660

RESUMO

Cell therapies are emerging as a new therapeutic frontier for the treatment of ischemic disease. However, femoral occlusions can be challenging environments for effective therapeutic cell delivery. In this study, cell-engineered hybrid scaffolds are implanted around the occluded femoral artery and the therapeutic benefit through the formation of new collateral arteries is investigated. First, it is reported the fabrication of different hybrid "hard-soft" 3D channel-shaped scaffolds comprising either poly(ε-caprolactone) (PCL) or polylactic-co-glycolic acid (PLGA) and electro-spun of gelatin (GL) nanofibers. Both PCL-GL and PLGA-GL scaffolds show anisotropic characteristics in mechanical tests and PLGA displays a greater rigidity and faster degradability in wet conditions. The resulting constructs are engineered using human adventitial pericytes (APCs) and both exhibit excellent biocompatibility. The 3D environment also induces expressional changes in APCs, conferring a more pronounced proangiogenic secretory profile. Bioprinting of alginate-pluronic gel (AG/PL), containing APCs and endothelial cells, completes the hybrid scaffold providing accurate spatial organization of the delivered cells. The scaffolds implantation around the mice occluded femoral artery shows that bioengineered PLGA hybrid scaffold outperforms the PCL counterpart accelerating limb blood flow recovery through the formation arterioles with diameters >50 µm, demonstrating the therapeutic potential in stimulating reparative angiogenesis.

9.
Eur J Heart Fail ; 22(9): 1568-1581, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32384208

RESUMO

AIMS: Homozygosity for a four-missense single-nucleotide polymorphism haplotype of the human BPIFB4 gene is enriched in long-living individuals. Delivery of this longevity-associated variant (LAV) improved revascularisation and reduced endothelial dysfunction and atherosclerosis in mice through a mechanism involving the stromal cell-derived factor-1 (SDF-1). Here, we investigated if delivery of the LAV-BPIFB4 gene may attenuate the progression of diabetic cardiomyopathy. METHODS AND RESULTS: Compared with age-matched lean controls, diabetic db/db mice showed altered echocardiographic indices of diastolic and systolic function and histological evidence of microvascular rarefaction, lipid accumulation, and fibrosis in the myocardium. All these alterations, as well as endothelial dysfunction, were prevented by systemic LAV-BPIFB4 gene therapy using an adeno-associated viral vector serotype 9 (AAV9). In contrast, AAV9 wild-type-BPIFB4 exerted no benefit. Interestingly, LAV-BPIFB4-treated mice showed increased SDF-1 levels in peripheral blood and myocardium and up-regulation of the cardiac myosin heavy chain isoform alpha, a contractile protein that was reduced in diabetic hearts. SDF-1 up-regulation was instrumental to LAV-BPIFB4-induced benefit as both haemodynamic and structural improvements were inhibited by an orally active antagonist of the SDF-1 CXCR4 receptor. CONCLUSIONS: In mice with type-2 diabetes, LAV-BPIFB4 gene therapy promotes an advantageous remodelling of the heart, allowing it to better withstand diabetes-induced stress. These results support the viability of transferring healthy characteristics of longevity to attenuate diabetic cardiac disease.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Animais , Diabetes Mellitus Tipo 2/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Longevidade , Camundongos , Camundongos Obesos , Miocárdio , Obesidade , Fosfoproteínas , Receptores CXCR4 , Transdução de Sinais
10.
Cells ; 9(5)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455800

RESUMO

Characterisation of animal models of diabetic cardiomyopathy may help unravel new molecular targets for therapy. Long-living individuals are protected from the adverse influence of diabetes on the heart, and the transfer of a longevity-associated variant (LAV) of the human BPIFB4 gene protects cardiac function in the db/db mouse model. This study aimed to determine the effect of LAV-BPIFB4 therapy on the metabolic phenotype (ultra-high-performance liquid chromatography-mass spectrometry, UHPLC-MS) and cardiac transcriptome (next-generation RNAseq) in db/db mice. UHPLC-MS showed that 493 cardiac metabolites were differentially modulated in diabetic compared with non-diabetic mice, mainly related to lipid metabolism. Moreover, only 3 out of 63 metabolites influenced by LAV-BPIFB4 therapy in diabetic hearts showed a reversion from the diabetic towards the non-diabetic phenotype. RNAseq showed 60 genes were differentially expressed in hearts of diabetic and non-diabetic mice. The contrast between LAV-BPIFB4- and vehicle-treated diabetic hearts revealed eight genes differentially expressed, mainly associated with mitochondrial and metabolic function. Bioinformatic analysis indicated that LAV-BPIFB4 re-programmed the heart transcriptome and metabolome rather than reverting it to a non-diabetic phenotype. Beside illustrating global metabolic and expressional changes in diabetic heart, our findings pinpoint subtle changes in mitochondrial-related proteins and lipid metabolism that could contribute to LAV-BPIFB4-induced cardio-protection in a murine model of type-2 diabetes.


Assuntos
Diabetes Mellitus/genética , Diabetes Mellitus/terapia , Genômica , Cardiopatias/genética , Cardiopatias/terapia , Longevidade/genética , Terapia de Alvo Molecular , Animais , Humanos , Lentivirus/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transcriptoma/genética
11.
Arterioscler Thromb Vasc Biol ; 40(6): 1491-1509, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32295421

RESUMO

OBJECTIVE: Galectin-3 (formerly known as Mac-2), encoded by the LGALS3 gene, is proposed to regulate macrophage adhesion, chemotaxis, and apoptosis. We investigated the role of galectin-3 in determining the inflammatory profile of macrophages and composition of atherosclerotic plaques. Approach and Results: We observed increased accumulation of galectin-3-negative macrophages within advanced human, rabbit, and mouse plaques compared with early lesions. Interestingly, statin treatment reduced galectin-3-negative macrophage accrual in advanced plaques within hypercholesterolemic (apolipoprotein E deficient) Apoe-/- mice. Accordingly, compared with Lgals3+/+:Apoe-/- mice, Lgals3-/-:Apoe-/- mice displayed altered plaque composition through increased macrophage:smooth muscle cell ratio, reduced collagen content, and increased necrotic core area, characteristics of advanced plaques in humans. Additionally, macrophages from Lgals3-/- mice exhibited increased invasive capacity in vitro and in vivo. Furthermore, loss of galectin-3 in vitro and in vivo was associated with increased expression of proinflammatory genes including MMP (matrix metalloproteinase)-12, CCL2 (chemokine [C-C motif] ligand 2), PTGS2 (prostaglandin-endoperoxide synthase 2), and IL (interleukin)-6, alongside reduced TGF (transforming growth factor)-ß1 expression and consequent SMAD signaling. Moreover, we found that MMP12 cleaves macrophage cell-surface galectin-3 resulting in the appearance of a 22-kDa fragment, whereas plasma levels of galectin-3 were reduced in Mmp12-/-:Apoe-/- mice, highlighting a novel mechanism where MMP12-dependent cleavage of galectin-3 promotes proinflammatory macrophage polarization. Moreover, galectin-3-positive macrophages were more abundant within plaques of Mmp12-/-:Apoe-/- mice compared with Mmp12+/+:Apoe-/- animals. CONCLUSIONS: This study reveals a prominent protective role for galectin-3 in regulating macrophage polarization and invasive capacity and, therefore, delaying plaque progression.


Assuntos
Aterosclerose/patologia , Galectina 3/fisiologia , Macrófagos/fisiologia , Animais , Cruzamentos Genéticos , Feminino , Galectina 3/análise , Galectina 3/deficiência , Humanos , Inflamação/patologia , Macrófagos/química , Macrófagos/patologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Placa Aterosclerótica/patologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
12.
Theranostics ; 10(6): 2597-2611, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194822

RESUMO

Rationale: Despite the preferred application of arterial conduits, the greater saphenous vein (SV) remains indispensable for coronary bypass grafting (CABG), especially in multi-vessel coronary artery disease (CAD). The objective of the present work was to address the role of mechanical forces in the activation of maladaptive vein bypass remodeling, a process determining progressive occlusion and recurrence of ischemic heart disease. Methods: We employed a custom bioreactor to mimic the coronary shear and wall mechanics in human SV vascular conduits and reproduce experimentally the biomechanical conditions of coronary grafting and analyzed vein remodeling process by histology, histochemistry and immunofluorescence. We also subjected vein-derived cells to cyclic uniaxial mechanical stimulation in culture, followed by phenotypic and molecular characterization using RNA and proteomic methods. We finally validated our results in vitro and using a model of SV carotid interposition in pigs. Results: Exposure to pulsatile flow determined a remodeling process of the vascular wall involving reduction in media thickness. Smooth muscle cells (SMCs) underwent conversion from contractile to synthetic phenotype. A time-dependent increase in proliferating cells expressing mesenchymal (CD44) and early SMC (SM22α) markers, apparently recruited from the SV adventitia, was observed especially in CABG-stimulated vessels. Mechanically stimulated SMCs underwent transition from contractile to synthetic phenotype. MALDI-TOF-based secretome analysis revealed a consistent release of Thrombospondin-1 (TSP-1), a matricellular protein involved in TGF-ß-dependent signaling. TSP-1 had a direct chemotactic effect on SV adventitia resident progenitors (SVPs); this effects was inhibited by blocking TSP-1 receptor CD47. The involvement of TSP-1 in adventitial progenitor cells differentiation and graft intima hyperplasia was finally contextualized in the TGF-ß-dependent pathway, and validated in a saphenous vein into carotid interposition pig model. Conclusions: Our results provide the evidence of a matricellular mechanism involved in the human vein arterialization process controlled by alterations in tissue mechanics, and open the way to novel potential strategies to block VGD progression based on targeting cell mechanosensing-related effectors.


Assuntos
Ponte de Artéria Coronária , Miócitos de Músculo Liso , Veia Safena , Trombospondina 1/fisiologia , Remodelação Vascular , Adulto , Idoso , Animais , Proliferação de Células , Células Cultivadas , Feminino , Oclusão de Enxerto Vascular/fisiopatologia , Humanos , Masculino , Fenômenos Mecânicos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/citologia , Veia Safena/citologia , Suínos
13.
J Am Heart Assoc ; 9(4): e014214, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32067581

RESUMO

Background We have previously reported the possibility of using pericytes from leftovers of palliative surgery of congenital heart disease to engineer clinically certified prosthetic grafts. Methods and Results Here, we assessed the feasibility of using prosthetic conduits engineered with neonatal swine pericytes to reconstruct the pulmonary artery of 9-week-old piglets. Human and swine cardiac pericytes were similar regarding anatomical localization in the heart and antigenic profile following isolation and culture expansion. Like human pericytes, the swine surrogates form clones after single-cell sorting, secrete angiogenic factors, and extracellular matrix proteins and support endothelial cell migration and network formation in vitro. Swine pericytes seeded or unseeded (control) CorMatrix conduits were cultured under static conditions for 5 days, then they were shaped into conduits and incubated in a flow bioreactor for 1 or 2 weeks. Immunohistological studies showed the viability and integration of pericytes in the outer layer of the conduit. Mechanical tests documented a reduction in stiffness and an increase in strain at maximum load in seeded conduits in comparison with unseeded conduits. Control and pericyte-engineered conduits were then used to replace the left pulmonary artery of piglets. After 4 months, anatomical and functional integration of the grafts was confirmed using Doppler echography, cardiac magnetic resonance imaging, and histology. Conclusions These findings demonstrate the feasibility of using neonatal cardiac pericytes for reconstruction of small-size branch pulmonary arteries in a large animal model.


Assuntos
Prótese Vascular , Cardiopatias Congênitas/cirurgia , Pericitos , Artéria Pulmonar/cirurgia , Engenharia Tecidual , Animais , Animais Recém-Nascidos , Técnicas de Cultura de Células , Estudos de Viabilidade , Feminino , Suínos , Alicerces Teciduais
14.
Front Cardiovasc Med ; 7: 609980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553259

RESUMO

Reconstructive surgery of congenital heart disease (CHD) remains inadequate due to the inability of prosthetic grafts to match the somatic growth of pediatric patients. Functionalization of grafts with mesenchymal stem cells (MSCs) may provide a solution. However, MSCs represent a heterogeneous population characterized by wide diversity across different tissue sources. Here we investigated the suitability of umbilical cord pericytes (UCPs) in neonatal vascular engineering. Explant outgrowth followed by immunomagnetic sorting was used to isolate neural/glial antigen 2 (NG2)+/CD31- UCPs. Expanded NG2 UCPs showed consistent antigenic phenotype, including expression of mesenchymal and stemness markers, and high proliferation rate. They could be induced to a vascular smooth muscle cell-like phenotype after exposure to differentiation medium, as evidenced by the expression of transgelin and smooth muscle myosin heavy chain. Analysis of cell monolayers and conditioned medium revealed production of extracellular matrix proteins and the secretion of major angiocrine factors, which conferred UCPs with ability to promote endothelial cell migration and tube formation. Decellularized swine-derived grafts were functionalized using UCPs and cultured under static and dynamic flow conditions. UCPs were observed to integrate into the outer layer of the graft and modify the extracellular environment, resulting in improved elasticity and rupture strain in comparison with acellular grafts. These findings demonstrate that a homogeneous pericyte-like population can be efficiently isolated and expanded from human cords and integrated in acellular grafts currently used for repair of CHD. Functional assays suggest that NG2 UCPs may represent a viable option for neonatal tissue engineering applications.

15.
Mol Ther Nucleic Acids ; 17: 49-62, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220779

RESUMO

MicroRNA-15a (miR-15a) and miR-16, which are transcribed from the miR-15a/miR-16-1 cluster, inhibit post-ischemic angiogenesis. MicroRNA (miRNA) binding to mRNA coding sequences (CDSs) is a newly emerging mechanism of gene expression regulation. We aimed to (1) identify new mediators of the anti-angiogenic action of miR-15a and -16, (2) develop an adenovirus (Ad)-based miR-15a/16 decoy system carrying a luciferase reporter (Luc) to both sense and inhibit miR-15a/16 activity, and (3) investigate Ad.Luc-Decoy-15a/16 therapeutic potential in a mouse limb ischemia (LI) model. LI increased miR-15a and -16 expression in mouse muscular endothelial cells (ECs). The miRNAs also increased in cultured human umbilical vein ECs (HUVECs) exposed to serum starvation, but not hypoxia. Using bioinformatic tools and luciferase activity assays, we characterized miR-15a and -16 binding to Tie2 CDS. In HUVECs, miR-15a or -16 overexpression reduced Tie2 at the protein, but not the mRNA, level. Conversely, miR-15a or -16 inhibition improved angiogenesis in a Tie2-dependent manner. Local Ad.Luc-Decoy-15a/16 delivery increased Tie2 levels in ischemic skeletal muscle and improved post-LI angiogenesis and perfusion recovery, with reduced toe necrosis. Bioluminescent imaging (in vivo imaging system [IVIS]) provided evidence that the Ad.Luc-Decoy-15a/16 system responds to miR-15a/16 increases. In conclusion, we have provided novel mechanistic evidence of the therapeutic potential of local miR-15a/16 inhibition in LI.

16.
Diabetologia ; 62(7): 1297-1311, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31016359

RESUMO

AIMS/HYPOTHESIS: Sensory neuropathy is common in people with diabetes; neuropathy can also affect the bone marrow of individuals with type 2 diabetes. However, no information exists on the state of bone marrow sensory innervation in type 1 diabetes. Sensory neurons are trophically dependent on nerve growth factor (NGF) for their survival. The aim of this investigation was twofold: (1) to determine if sensory neuropathy affects the bone marrow in a mouse model of type 1 diabetes, with consequences for stem cell liberation after tissue injury; and (2) to verify if a single systemic injection of the NGF gene exerts long-term beneficial effects on these phenomena. METHODS: A mouse model of type 1 diabetes was generated in CD1 mice by administration of streptozotocin; vehicle was administered to non-diabetic control animals. Diabetic animals were randomised to receive systemic gene therapy with either human NGF or ß-galactosidase. After 13 weeks, limb ischaemia was induced in both groups to study the recovery post injury. When the animals were killed, samples of tissue and peripheral blood were taken to assess stem cell mobilisation and homing, levels of substance P and muscle vascularisation. An in vitro cellular model was adopted to verify signalling downstream to human NGF and related neurotrophic or pro-apoptotic effects. Normally distributed variables were compared between groups using the unpaired Student's t test and non-normally distributed variables were assessed by the Wilcoxon-Mann-Whitney test. The Fisher's exact test was employed for categorical variables. RESULTS: Immunohistochemistry indicated a 3.3-fold reduction in the number of substance P-positive nociceptive fibres in the bone marrow of type 1 diabetic mice (p < 0.001 vs non-diabetic). Moreover, diabetes abrogated the creation of a neurokinin gradient which, in non-diabetic mice, favoured the mobilisation and homing of bone-marrow-derived stem cells expressing the substance P receptor neurokinin 1 receptor (NK1R). Pre-emptive gene therapy with NGF prevented bone marrow denervation, contrasting with the inhibitory effect of diabetes on the mobilisation of NK1R-expressing stem cells, and restored blood flow recovery from limb ischaemia. In vitro hNGF induced neurite outgrowth and exerted anti-apoptotic actions on rat PC12 cells exposed to high glucose via activation of the canonical neurotrophic tyrosine kinase receptor type 1 (TrkA) signalling pathway. CONCLUSIONS/INTERPRETATION: This study shows, for the first time, the occurrence of sensory neuropathy in the bone marrow of type 1 diabetic mice, which translates into an altered modulation of substance P and depressed release of substance P-responsive stem cells following ischaemia. NGF therapy improves bone marrow sensory innervation, with benefits for healing on the occurrence of peripheral ischaemia. Nociceptors may represent a new target for the treatment of ischaemic complications in diabetes.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Terapia Genética/métodos , Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/citologia , Células-Tronco/citologia , Animais , Medula Óssea , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/metabolismo , Imuno-Histoquímica , Isquemia/terapia , Masculino , Camundongos , Células Receptoras Sensoriais/metabolismo , Células-Tronco/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 39(6): 1113-1124, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018661

RESUMO

Objective- To determine the role of the oncofetal protein TPBG (trophoblast glycoprotein) in normal vascular function and reparative vascularization. Approach and Results- Immunohistochemistry of human veins was used to show TPBG expression in vascular smooth muscle cells and adventitial pericyte-like cells (APCs). ELISA, Western blot, immunocytochemistry, and proximity ligation assays evidenced a hypoxia-dependent upregulation of TPBG in APCs not found in vascular smooth muscle cells or endothelial cells. This involves the transcriptional modulator CITED2 (Atypical chemokine receptor 3 CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail) and downstream activation of CXCL12 (chemokine [C-X-C motif] ligand-12) signaling through the CXCR7 (C-X-C chemokine receptor type 7) receptor and ERK1/2 (extracellular signal-regulated kinases 1/2). TPBG silencing by siRNA transfection downregulated CXCL12, CXCR7, and pERK (phospho Thr202/Tyr204 ERK1/2) and reduced the APC migratory and proangiogenic capacities. TPBG forced expression induced opposite effects, which were associated with the formation of CXCR7/CXCR4 (C-X-C chemokine receptor type 4) heterodimers and could be contrasted by CXCL12 and CXCR7 neutralization. In vivo Matrigel plug assays using APCs with or without TPBG silencing evidenced TPBG is essential for angiogenesis. Finally, in immunosuppressed mice with limb ischemia, intramuscular injection of TPBG-overexpressing APCs surpassed naïve APCs in enhancing perfusion recovery and reducing the rate of toe necrosis. Conclusions- TPBG orchestrates the migratory and angiogenic activities of pericytes through the activation of the CXCL12/CXCR7/pERK axis. This novel mechanism could be a relevant target for therapeutic improvement of reparative angiogenesis.


Assuntos
Movimento Celular , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Pericitos/metabolismo , Veia Safena/metabolismo , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Membro Posterior , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/cirurgia , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Nus , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/transplante , Fosforilação , Receptores CXCR/genética , Receptores CXCR/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo
18.
J Colloid Interface Sci ; 512: 404-410, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29096100

RESUMO

The mounting interest in layered double hydroxide (LDH) nanoparticles as drug carriers and bio-imaging contrast agents makes biosafety evaluation of LDH essential. Considering the important role of blood circulation in bio-distribution of nanoparticles, the present work evaluated the impact of MgAl-LDHs on key components of the circulatory system, including vascular cells (vascular smooth muscle cells (SMCs) and endothelial cells (HUVECs)), red blood cells (RBCs), and complement activation. The results showed that LDH had no effects on SMCs and HUVECs at concentrations up to 500 and 10 µg/mL respectively, in terms of cell proliferation and viability. LDH (10 µg/mL) did not change either the migration distance or the number of migrating SMCs in culture. Moreover, LDH (400 µg/mL) had a negligible effect on RBCs' lysis, and there was no significant increase in levels of complement activation product, C5a, in the presence of LDH (20 or 200 µg/mL). The low toxicity for vascular cells and blood cells combined with low immunogenicity sheds a light on the biosafety of LDH nanoparticles, and encourages further studies into their biomedical applications.


Assuntos
Hidróxido de Alumínio/química , Células Sanguíneas/efeitos dos fármacos , Ativação do Complemento/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Hidróxido de Magnésio/química , Miócitos de Músculo Liso/efeitos dos fármacos , Nanopartículas/administração & dosagem , Células Cultivadas , Humanos , Nanopartículas/química
19.
J Mol Cell Cardiol ; 107: 22-26, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28431892

RESUMO

Myocarditis, the principal cause of dilated cardiomyopathy and heart failure in young adults, is associated with autoimmunity to human cardiac α-myosin (hCAM) and the DR4 allele of human major histocompatibility II (MHCII). We developed an hCAM-induced myocarditis model in human HLA-DR4 transgenic mice that lack all mouse MHCII genes, demonstrating that immunization for 3weeks significantly increased splenic T-cell proliferative responses and titres of IgG1 and IgG2c antibodies, abolished weight gain, provoked cardiac inflammation and significantly impaired cardiac output and fractional shortening, by echocardiography, compared to adjuvant-injected mice. Neither cardiac dilatation nor fibrosis occurred at this time point but prolonging the experiment was associated with mortality. Treatment with mixtures of hCAM derived peptides predicted to have high affinity for DR4 significantly preserved ejection fraction and fractional shortening. Our new humanized mouse model of autoimmune cardiomyopathy should be useful to refine hCAM-derived peptide treatment.


Assuntos
Doenças Autoimunes/genética , Miosinas Cardíacas/genética , Antígeno HLA-DR4/genética , Miocardite/genética , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Antígeno HLA-DR4/imunologia , Humanos , Imunoglobulina G/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/fisiopatologia , Camundongos , Camundongos Transgênicos , Miocardite/tratamento farmacológico , Miocardite/imunologia , Miocardite/fisiopatologia , Peptídeos/administração & dosagem , Peptídeos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
PLoS One ; 11(2): e0148873, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26886778

RESUMO

BACKGROUND: Thelper1 (Th1) lymphocytes have been previously implicated in atherosclerotic plaque growth but their role in plaque vulnerability to rupture is less clear. We investigated whether T-bet knockout that prevents Th1 lymphocyte differentiation modulates classical (M1) macrophage activation or production of matrix degrading metalloproteinases (MMPs) and their tissue inhibitors, TIMPs. METHODS & RESULTS: We studied the effect of T-bet deletion in apolipoproteinE (ApoE) knockout mice fed a high fat diet (HFD) or normal chow diet (ND). Transcript levels of M1/M2 macrophage polarization markers, selected MMPs and TIMPs were measured by RT-qPCR in macrophages isolated from subcutaneous granulomas or in whole aortae. Immunohistochemistry of aortic sinus (AS) and brachiocephalic artery (BCA) plaques was conducted to quantify protein expression of the same factors. Deletion of T-bet decreased mRNA for the M1 marker NOS-2 in granuloma macrophages but levels of M2 markers (CD206, arginase-1 and Ym-1), MMPs-2, -9, -12, -13, -14 and -19 or TIMPs-1 to -3 were unchanged. No mRNA differences were observed in aortic extracts from mice fed a HFD for 12 weeks. Moreover, AS and BCA plaques were similarly sized between genotypes, and had similar areas stained for NOS-2, COX-2, MMP-12 and MMP-14 proteins. T-bet deletion increased MMP-13, MMP-14 and arginase-1 in AS plaques. After 35 weeks of ND, T-bet deletion reduced the size of AS and BCA plaques but there were no differences in the percentage areas stained for M1 or M2 markers, MMPs-12, -13, -14, or TIMP-3. CONCLUSIONS: Absence of Th1 lymphocytes is associated with reduced plaque size in ApoE knockout mice fed a normal but not high fat diet. In either case, M1 macrophage polarization and expression of several MMPs related to plaque instability are either maintained or increased.


Assuntos
Apolipoproteínas E/deficiência , Polaridade Celular , Deleção de Genes , Macrófagos/patologia , Metaloproteinases da Matriz/metabolismo , Placa Aterosclerótica/patologia , Proteínas com Domínio T/deficiência , Animais , Antígenos Ly/metabolismo , Aorta/patologia , Apolipoproteínas E/metabolismo , Líquido Ascítico/citologia , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Dieta Hiperlipídica , Citometria de Fluxo , Granuloma/patologia , Imuno-Histoquímica , Lipídeos/sangue , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Metaloproteinases da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Baço/metabolismo , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...